Ledgroup72.ru

Лед Групп
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

6. 1 Приспособления и инструменты, применяемые при ремонте

6.1 Приспособления и инструменты, применяемые при ремонте

Для ремонта и испытания ВБО-25-20/630УХЛ1, применяются:

· генератор ацетиленовый передвижной АСП-1,25-7 ТУ 26-05-503-80;

· мегомметр на 2500 В М1-ЖТ ГОСТ 23706-79;

· кран мостовой Q=5т;

· набор гаечных ключей ГОСТ 2839-80;

· молоток ГОСТ 2310-88;

· штангенциркуль ЩЦ-1-125-0,1 ГОСТ 166-89;

· набор щупов №4 кл. 2;

· лупа артикул SMG04 диаметром 100 мм.

Делись добром 😉

Похожие главы из других работ:

1.5 Инструменты и приспособления

Для выполнения разборно-сборочных работ используют комплекты слесарно-монтажных инструментов а так же съемники и приспособления.

1.5 Инструменты и приспособления

Инструмент для разборочно-сборочных работ. Гаечные ключи: открытые двухсторонний и односторонний, накладной, секторные и вильчатые; угловые торцовые, торцовый со сменной поворотной головкой, крестообразные и др. Рис.

III. ИНСТРУМЕНТЫ, ПРИСПОСОБЛЕНИЯ И МАТЕРИАЛЫ, ПРИМЕНЯЕМЫЕ ПРИ Т.О. И РЕМОНТЕ

-Отвертка (Рис.9) -Штангенциркуль (Рис.10) -Мультиметр (Рис.11) -Пассатижи (Рис.12) -Молоток (Рис.13) -Наждачная бумага -Авто-тестер (Рис.14) -Динамометр -Ключи на 8, 10, 13. (Рис.15) Рис.9 Отвертка с съемными наконечниками. Рис.

1.7 Оборудование, средства механизации, технологическая оснастка и приспособления, применяемые при ремонте главного контроллера типа ЭКГ-8Ж

В цехе по ремонту главного контроллера ЭКГ-8Ж используется различное оборудование, которое подразделяется на: вспомогательный, режущий, и измерительный инструменты.

2.5 Инструменты и приспособления.

Рис.24 Набор инструментов Набор автомеханика НИА-1 позволяет произвести монтажные и демонтажные работы при техническом обслуживании или при ремонте автотранспортных средств.

6. Приспособления и инструменты применяемые при техническом обслуживании и ремонте ходовой части ГАЗ 3102

Домкрат Ключи комбинированные (рожковый — накидной) Торцевые головки Крестообразная отвертка Шлицевая отвертка Выколотки из мягкого металла. Зубило. Молоток. Тиски. Надфиль. Бородок. Монтажная лопатка. Пассатижи. Раздвижные пассатижи.

7. Приспособления, техническая оснастка, средства механизации, оборудование, применяемые при ремонте

При ремонте ТЭД применяется много оборудования и всевозможных приспособлений. Для импульсных испытаний изоляции обмоток якорей ТЭД, применяют импульсную установку типа НУ-57. Она предназначена для определения явных витковых замыканий.

6. Оборудование, приборы, приспособления и инструменты, применяемые при техническом обслуживание и ремонте

Сезонное техническое обслуживание (совместить с ТО-2) Весной и осенью Плотность электролита (г /см3) полностью заряженной батареи должна быть: 1,27 — для центральных районов (летом); 1,29 — для центральных районов (зимой); 1.

2. Применяемые инструменты и материалы

Рис. 4. Ключ комбинированный (рожковый — накидной): 6; 7; 8; 10; 11; 12; 13; 14; 15; 17; 19; 21; 22; 24;27; 30.Торцевая головка: 7; 8; 10; 12; 13; 14; 17; 19; 21 (высокая); 22; 24; 27; 30.Воротки для головок. Рис. 5.Крестообразные отвертки. Рис. 6.Шлицевые отвертки. Рис.7.

6. Оборудование, инструменты, приспособления и материалы

Слесарно-монтажные инструменты, применяемые на постах, должны быть исправными. Не допускается использование ключей с изношенными гранями и несоответствующих размеров, применение рычагов для увеличения плеча гаечных ключей.

6. Приспособления, техническая оснастка средств механизации, применяемые при ремонте

Основой повышения производительности труда и его качества, а также улучшения условий труда ремонтного персонала является механизация тяжелых, трудоемких, вредных и опасных работ.

6. ПРИСПОСОБЛЕНИЯ, СРЕДСТВА МЕХАНИЗАЦИИ, ПРИМЕНЯЕМЫЕ ПРИ РЕМОНТЕ ОСИ КОЛЕСНОЙ ПАРЫ

Подъемнотранспортное оборудование. Мостовой кран — 30 тонн. Кранбалка мостовая — 5 тонн. Машины для очистки. Моечная машина осей с перекладчиком предназначена для мойки и визуального осмотра осей колесных пар.

2. ОБОРУДОВАНИЕ, ИНСТРУМЕНТЫ, ПРИСПОСОБЛЕНИЯ, ПРИБОРЫ

1. Набор слесарных ключей; 2. Набор торцевых ключей; 3. Отвертка слесарная; 4. Молоток медный, или свинцовый.

4. Инструменты и приспособления

Технологическое оборудование, используемое на СТО, в зависимости от его назначения подразделяется на подъёмно-осмотровое, подъёмно-транспортное, специализированное оборудование для ТО и специализированное оборудование для ТР автомобилей.

Раздел 2. Применяемые инструменты, приспособления и оборудование

L-033М Установка для обслуживания системы охлаждения автомобиля. Установка для обслуживания системы охлаждения полным циклом промывки и замены охлаждающей жидкости. Полная высококачественная замена старой охлаждающей жидкости.

Тема курсового проекта: РАЗРАБОТКА ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА РЕМОНТА КОМПРЕССОРА КТ-6

1. Питропавлов. Ю.П. «Технология ремонта подвижного состава» М., Транспорт 2006г.

2. «Технология ремонта подвижного состава» Методическое пособие для специальности 23.02.06 «Техническая эксплуатация подвижного состава железных дорог» М.. 2010г.

3. Данковцев, В Г. Киселёв. В.И. Четвергов, В.А. «Техническое обслуживание и ремонт локомотивов» М.. 2007г.

4. Забалотный Н.Г. «Устройство и ремонт тепловозов. Управление и техническое обслуживание тепловозов» М „ 2007г.

5. Левицкий. А.Л. Снбаров, Ю.Г «Охрана труда в локомотивном хозяйстве» М., Транспорт 2009г.

Читайте так же:
Нагрев автоматического выключателя причины

6. Бервинов В.И. Доронин. Е.Ю. Зенин. И.П. «Техническое диагностирование и неразрушающий контроль деталей и узлов локомотивов»

7. Пойда. С.М. Кокошинскнй. А.Ф Хуторянский. Н.Н. «Механическое оборудование тепловозов (устройство и ремонт)» М., Транспорт 2005г. 8. Кузнецов. К.В. Дайлидко. А.А. и др. «Локомотивные устройства безопасности» М., 2008г.

Дата выдачи задания «07» 11.2017г.

Срок сдачи студентом законченной курсового проекта «__»_____2017г.

Руководитель проекта _____________ А.В.Чеджемов

Задание принял к исполнению _____________ /П.А.Булавинов

5
1.Ремонт компрессора КТ-66
2. Устройство компрессоров КТ-6, КТ-7, КТ-6Эл10
3. Выбор технологического оборудования при ремонте20
4.Организация рабочих мест.21
5. Основные требования техники безопасности при ремонте23
6. Ремонт поршня дизеля 10Д10027
7. Назначение. Основные элементы конструкции и технические данные сборной единицы29
8. Основные неисправности, их причины и предупреждения30
9. Периодичность и сроки плановых технических обслуживаний, технических осмотров с разборкой и без разборки.32
10. Способы очистки, осмотра, контроля. Технология ремонта, замена и способы восстановления изношенных частей33
11. Выбор и обоснование способа устранения неисправностей деталей сборочной единицы35
12. Предельно допустимые размеры деталей при эксплуатации, и при различных видах технического осмотра и ремонта38
Заключение39
Список используемых источников40

Введение

Обеспечение качества и безопасности услуг одна из самых актуальных проблем любой отрасли, не исключается и ж/д транспорт, который по-прежнему является одним из ведущих видов транспорта России.

Железнодорожный подвижной состав представляет собой сложную многоэлементную техническую систему, в которой отдельные элементы объединены в многочисленные узлы и агрегаты.

Основной задачей ж/д транспорта является полное и своевременное удовлетворение потребностей народного хозяйства и населения в перевозках, повышение эффективности и качества работы транспортной системы. Одним из решающих факторов, обеспечивающих четкую, ритмичную работу ж/д транспорта является устойчивая работа локомотивного хозяйства, улучшение технического состояния, содержание и использование локомотивного парка.

Правильная организация и своевременная технология ремонтов локомотивов, как показывает опыт передовых локомотивных депо и ж/д, позволяет содержать их в исправном состоянии при минимальных трудовых и материальных затратах.

Большое значение при этом имеет наличие ремонтной базы и её оснащенность.

В тепловозоремонтном производстве в настоящее время используют методы организации ремонта: агрегатный и поточно-конвейерный, специализация и концентрация производства по сериям тепловозов и виды ремонта, комплексная механизация и автоматизация производства, планирование и управление.

Ремонт компрессора КТ-6

Компрессоры предназначены для обеспечения сжатым возду­хом тормозной сети поезда и пневматической сети вспомогатель­ных аппаратов: электропневматических контакторов, реверсоров, песочниц и др.

Применяемые на подвижном составе компрессоры классифи­цируются по числу цилиндров (одно-, двухцилиндровые и т.д.); по расположению цилиндров (горизонтальные, вертикальные, V-и W-образные); по числу ступеней сжатия (одно- и двухступенча­тые); по типу привода (с приводом от электродвигателя или от двигателя внутреннего сгорания).

Вспомогательные компрессоры служат для наполнения сжа­тым воздухом пневматических магистралей, например, главного воздушного выключателя, блокирования щитов высоковольтной камеры и токоприемника при отсутствии сжатого воздуха в глав­ных резервуарах и резервуаре токоприемника после длительной стоянки электроподвижного состава в нерабочем состоянии.

Компрессоры должны полностью обеспечивать потребность в сжатом воздухе при максимальных расходах и утечках его в поезде. Во избежание недопустимого нагрева режим работы компрессора устанавливается повторно-кратковременным. При этом продолжи­тельность включения (ПВ) компрессора под нагрузкой допуска­ется не более 50 %, а продолжительность цикла до 10 мин.

Основные компрессоры, применяемые на подвижном составе, как правило, являются двухступенчатыми. Сжатие воздуха в них происходит последовательно в двух цилиндрах с промежуточным охлаждением между ступенями. Работа такого компрессора показана рис. 1.

При первом ходе вниз поршня 1 (рис. 1, а) открывается вса­сывающий клапан 3, и в цилиндр 2 первой ступени поступает воздух из атмосферы Ат при постоянном давлении. Линия всасы­вания АС (рис. 1, б) располагается ниже штриховой линии ат­мосферного барометрического давления на значение потерь на преодоление сопротивления всасывающего клапана. При ходе пор­шня 1 вверх всасывающий клапан 3 закрывается, объем рабочего пространства цилиндра 2 уменьшается и воздух сжимается по ли­нии CD до

Рисунок 1 — Схема двухступенчатого компрессора (а) и теоретическая инди­каторная диаграмма его работы (б):

1 — поршень; 2 — цилиндр первой ступени; 3 — всасывающий клапан; 4 — холодильник; 5— нагнетательный клапан

Давления в холодильнике 4, после чего открывается нагнетательный клапан 5 и происходит выталкивание сжатого воз­духа в холодильник по линии нагнетания DF с постоянным про­тиводавлением.

В процессе последующего хода поршня 1 вниз происходит рас­ширение оставшегося во вредном пространстве (объем простран­ства над поршнем в его верхнем положении) сжатого воздуха по линии FB до тех пор, пока давление в рабочей полости не пони­зится до определенного значения и всасывающий клапан 3 откро­ется атмосферным давлением. Далее процесс повторяется. На пер­вой ступени воздух сжимается до давления 2,0. 4,0 кгс/см2.

Аналогично работает вторая ступень компрессора со всасыва­нием воздуха из холодильника 4 по линии FE, сжатием по линии EG, нагнетанием в главные резервуары по линии GH, расшире­нием во вредном пространстве цилиндра второй ступени по ли­нии HF’. Заштрихованная площадь индикаторной диаграммы ха­рактеризует уменьшение работы сжатия вследствие охлаждения воздуха между ступенями.

Сжатие воздуха сопровождается выделением теплоты. В зависи­мости от интенсивности охлаждения и количества теплоты, отби­раемой от сжимаемого воздуха, линия сжатия может быть изотер­мой, когда отводится вся выделяющаяся теплота и температура остается постоянной, адиабатой, когда процесс сжатия идет без отвода теплоты, или политропой при частичном отводе выделяю­щейся теплоты.

Адиабатический и изотермический процессы сжатия являются теоретической идеализацией. Действительный процесс сжатия яв­ляется политропным.

Основными показателями работы компрессора являются про­изводительность (подача), объемный, изотермический и механи­ческий КПД.

Производительностью компрессора называется объем воздуха, нагнетаемый компрессором в резервуар в единицу времени, за­меренный на выходе из компрессора, но пересчитанный на усло­вия всасывания. Производительность компрессора локомотива определяют по времени повышения давления в главных резервуарах с 7,0 до 8,0 кгс/см2.

Объемный КПД характеризует уменьшение производительнос­ти компрессора под влиянием вредного пространства; он зависит от объема вредного пространства и давления. Двухступенчатое сжатие позволяет понизить температуру воз­духа в конце сжатия, улучшить условия смазывания компрессора и уменьшить потребляемую компрессором мощность за счет рабо­ты, сэкономленной благодаря охлаждению воздуха в промежу­точном холодильнике, а также повысить объемный КПД за счет уменьшения соотношения давлений нагнетания и всасывания.

Последнее изменение этой страницы: 2019-06-08; Просмотров: 586; Нарушение авторского права страницы

Электрооборудование мостового крана (1)

Основными направлениями экономического и социального развития являются дальнейшее повышение эффективности металлургии и повышения качества выпускаемой продукции.

Важнейшими задачами в развитии металлургической промышленности является механизация трудовых работ и автоматизация производственных процессов. В решении этих задач значительная роль выпала на подъемно-транспортные механизмы, в первую очередь краны, применяющиеся на металлургических предприятиях.

Следует заметить, что производительность цехов предприятия в значительной мере зависит от надежности работы и производительности кранов.

Работа крана в условиях того или иного цеха специфична и зависит от характера конкретного производственного процесса.

Конструкция крана в основном определяется из его назначения и специфики технологического процесса. Ряд узлов, например, механизм подъема и передвижения выполняются однотипными для кранов различных видов. Поэтому имеется много общего в вопросах выбора и эксплуатации электрооборудования крана. Оборудование крана стандартизовано, поэтому краны, различные по назначению и конструкции, комплектуются серийно-выпускаемым типовым электрооборудованием. Схемы управления отдельными кранами отличаются, это связано со спецификой цехов и назначением крана.

Проектируемый кран, грузоподъемностью 10 т.с., предназначен для подъема и перемещения грузов в металлургическом производстве крытых помещениях при температуре окружающего воздуха от +400С до -400С.

Кран предназначен для разгрузки железнодорожных составов с анодными блоками и погрузки на внутрицеховой транспорт.

Технические характеристики механизмов крана, режимы их работы

Проектируемый кран, грузоподъемностью Q =10 т.с. снабжен тремя основными механизмами:

1. Механизм передвижения моста.

2. Механизм передвижения тележки.

3. Механизм подъема.

Механизм передвижения моста

Привод ходовых колес осуществляется от двух асинхронных двигателей с фазным ротором.

Наименование данных механизма передвижения моста:

1. Скорость передвижения моста υ (м/мин)………………………. 75

6. Диаметр ходовых колес (мм)……………………………………. 500

8. Тип редуктора………………………………. 1Ц2У 200-10-12(21)У1

10. Группа режимов работы…………………..М7(5М ГОСТ 25835-83)

Механизм передвижения тележки

Движение тележки осуществляется асинхронным двигателем с фазным ротором через редуктор.

Наименование данных механизма передвижения моста:

1. Скорость передвижения тележки υ (м/мин)…………………. 37,8

4. Тип редуктора……………………………………….Ц3ВК-160-20-16У1

5. Полное передаточное число…………………………………………. 20

7. Группа режимов работы………………………М6(4М ГОСТ 25835-83)

Привод механизма подъема осуществляется асинхронным двигателем с фазным ротором через шестереночный редуктор.

Наименование данных механизма подъема:

1. Грузоподъемность Q (т.с.)……………………………………………. 10

3. Число ветвей полиспаст…………………………………………………3

7. Диаметр блока полиспаст(мм)……………………………………….406

8. Диаметр уравнительного блока (мм)………………………………. 406

9. Тип редуктора……………………………………..1Ц2У-400-25-11МУ1

10. Полное передаточное число………………………………………….25

11. Диаметр барабана (мм)……………………………………………. 504

12. Группа режимов работы…………………….М7 (5М ГОСТ 25835-83)

13. Скорость подъема υ (м/мин)………………………………………….12

Режим работы крана

Режим работы крановых механизмов – важный фактор при выборе мощности приводных электродвигателей, аппаратуры и системы управления. От него зависит и конструктивное исполнение механизмов.

Режимы работы кранов металлургических цехов разнообразны и в основном определяются особенностями технологических процессов. При этом в ряде случаев даже однотипные краны работают в разных режимах. Неверный выбор режима при проектировании электропривода кранов ухудшает технико-экономические показатели всей установки. Так, например, выбор более тяжелого режима работы по сравнению с реальным приводит к завышению габаритов, массы и стоимости кранового оборудования. Выбор же более легкого режима означает повышенный износ электрооборудования, частые поломки и простой. Поэтому важно выбрать оптимальный режим работы кранового механизма.

Режим работы кранового механизма характеризуется следующими показателями:

1. Относительная продолжительность включения (ПВ)

2. Среднесуточное время работы

3. Число включений за 1 час электродвигателя

4. Коэффициент нагрузки

5. Коэффициент временности нагрузки

6. Коэффициент использования механизма

По правилам Госгортехнадзора для крановых механизмов установлено четыре номинальных режима работы:

Легкий (Л), Средний (С), Тяжелый (Т) и Весьма тяжелый (ВТ).

Для каждого механизма крана режим работы определяется отдельно, режим работы крана в целом устанавливается по механизму подъема. В соответствии со стандартом СЭВ 2077-80 все краны разделяются на 7 классов (А0-А6) ([2] стр. 7 табл. 1). Все механизмы крана работают в весьма тяжелом режиме (ВТ) ПВ=40%.

Курсовой проект по ремонту главного выключателя

Чертежи и проекты

Разделы АС, АР, КЖ, КМ, КМД и т.д.
Разделы ЭМ, ЭС, ЭО, ЭОМ и т.д.
Разделы ОВ, ОВиК, ТМ, ТС и т.д.
Разделы ПС, ПТ, АПС, ОС, АУПТ и т.д.
Разделы ТХ и т.д.
Разделы ВК, НВК и т.д.
Разделы СС, ВОЛС, СКС и т.д.
Разделы АВТ, АВК, АОВ, КИПиА, АТХ, т.д.
Разделы АД, ГП, ОДД т.д.
Чертежи станков, механизмов, узлов
Базы чертежей, блоки

Подразделы

для студентов всех специальностей
Котлы и котельное оборудование

Наружное противопожарное водоснабжениеФормат dwg pdf

Для нужд пожарного водопровода проектом предусматривается устройство двух резервуаров по 200 м3 каждый, а также насосная станция.

В архмиве 3d модель насоса HYDRO MX-A

СИСТЕМЫ ЭЛЕКТРООБОРУДОВАНИЯ ЖИЛЫХ И ОБЩЕСТВЕННЫХ ЗДАНИЙ

Системы электрооборудования жилых и общественных зданий

Программа расчета балок Мост_Х1. Программа «Мост_Х» предназначена для определения грузоподъёмности балочных разрезных пролётных строений автодорожных мостов и путепроводов, находящихся на прямом в плане участке автодороги.

Формат Exel

Программа в свободном доступе, скачать можно после регистрации

Блочно-модульная котельная для здания пришахтинского овдФормат dwg

г. Караганда. Казахстан

Блочно-модульная котельная для здания пришахтинского овд

Планировка детского лагеряФормат dwg

Исходный текст на китайском

Чертежи и узлы сложной деревянной крыши частного домаЧертежи и узлы сложной деревянной крыши для частного дома в dwg

Чертежи гирлянд в dwg, удлиненная и стандартнаяЧертежи гирлянд в dwg, удлиненная и стандартная

ППР разработан на производство работ по расширению просек ВЛ-220кВ и утилизации порубочных остатковППР разработан на производство работ по расширению просек ВЛ-220кВ и утилизации порубочных остатков

Проект видеонаблюдения магазинаIP-видеорегистратор CMD-NVR5109 V2 поддерживает подключение до 9 IP-камер с разрешением 1920×1080 и скоростью записи 25 к/с на каждый канал.

Глубина архива видеорегистратора составляет один месяц при постоянной круглосуточной записи с 8 IP-видеокамер за счет установки жесткого диска объемом 6 ТБ.

Формат dwg

Рабочий проект системы видеонаблюдения СВН дома в dwgРабочий проект системы видеонаблюдения СВН дома в dwg

Высоковольтные выключатели

Все приложения, графические материалы, формулы, таблицы и рисунки работы на тему: Высоковольтные выключатели (предмет: Физика и энергетика) находятся в архиве, который можно скачать с нашего сайта. Приступая к прочтению данного произведения (перемещая полосу прокрутки браузера вниз), Вы соглашаетесь с условиями открытой лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная (CC BY 4.0) .

Технический Университет Молдовы

Partea electrica a centralelor

Indrumari metodice pentru laborator «Высоковольтные выключатели» (specializarile EI si SRE)

Методические указания к лабораторной работе

2. Основные сведения

2.1 Краткая теория

2.2 Конструкция выключателя ВВ/TEL

2.3 Конструкция полюса

2.4 Конструкция вакуумной дугогасительной камеры

3. Принцип действия модуля

3.3 Блоки управления

4. Технические характеристики ВВ/TEL

5. Область применения и условия выбора выключателей

6. Программа работы

7. Структура отчета

Изучение конструкции, принципа действия и области примения ваккумных выключателей.

2. Основные сведения

2.1 Краткая теория

Электрическая прочность вакуума (10-6 мм. рт. ст. ) значительно выше прочности других сред, применяемых в выключателях, Объясняется это увеличением длины среднего свободного пробега электронов, атомов, ионов и молекул по мере уменьшения давления. В вакууме длина свободного пробега частиц превышает размеры вакуумной камеры. В этих условиях удары частиц о стенки камеры происходят значительно чаще, чем соударения между частицами. При высокой электрической прочности вакуума (?30 кВ/мм) расстояние между контактами может быть очень малым (от 2?2,5 см) , поэтому размеры дугогасительной камеры могут быть также относительно небольшими. Процесс восстановления электрической прочности промежутка между контактами при отключении тока протекает в вакууме значительно быстрее, чем в газах.

Для надежности работы вакуумного выключателя и увеличения срока его службы весьма важную роль играет износостойкость контактов, которые рапыливаются во время горения дуги. Металлы, используемые для контактов, должны обладать механической прочностью, высокой проводимостью, стойкостью относительно эрозии и сваривания. Применение получили бипарные сплавы: Cu-Bi, Cu-Te, Ag-Bi, и др.

В лаборатории представлены вакуумные выключатели промышленной группы «Таврида-Электрик» (BB/TEL), предназначенные для работы в закрытых распределительных устройствах 6-10-20 кВ с ячейками КСО (камера стационарная одностороннего обслуживания) или КРУ (комплексное распределительное устройство).

2.2 Конструкция BB/TEL

Рис. 2.1. Конструкция BB/TEL

В отличиe от большинства существующих выключателей, в основу устройства BB/TEL заложен принцип раздельного управления контактами вакуумных дугогасительных камер фаз аппарата. Данный принцип позволил существенно уменьшить количество движущихся частей привода.

Вакуумные дугогасительные камеры установлены внутри полых опорных изоляторов, закрепленных на общем основании. Подвижные контакты дугогасительных камер жестко соеденины со своими приводами посредством изоляционных тяг, которые также располагаются внутри опорных изоляторов. Таким образом, все элементы конструкции полюса имеют общую ось симметрии, вдоль которой детали механизма совершают возвратно-поступательное движение. Это позволяет существенно упростить кинематическую схему BB/TEL, отказаться от применения нагруженных шарнирных и рычажных звеньев, что, в свою очередь, делает возможным создание коммутационного аппарата с высоким механическим ресурсом, не требующим обслуживания и регулировки в течении всего срока слыжбы. Так ресурс по коммутационной стойкости при номинальном Iном, операций ВО (включение — отключение) составляет — 50000, при токах короткого замыкания IO НОМ, операций ВО составляет — 100. Срок службы до списания — 25 лет.

Приводы фаз располагаются внутри основания выключателя. Они механически соеденены между собой посредством общего вала, который выполняет три функции:

обеспечивает синхронизацию фаз, предохраняя от неполнофазных режимов работы;

приводит в действие вспомогательные контакты выключателя;

обеспечивает механическую блокировку работы РУ, в котором установлен BB/TEL и управляет визуальными индикаторами положения BB/TEL.

2.3 Конструкция полюса выключателя

Рис. 2.2. Электромагнитный привод с магнитной защелкой.

Электромагнитный привод может находиться в двух устойчивых положениях — отключено и включено.

Фиксация якоря в этих положениях производится без применения механических защелок и обеспечивается:

— силой упругости отключающей пружины в положении отключено;

— силой, создаваемой остаточным магнитным потоком кольцевого постоянного магнита, в положении включено.

Операция включения и отключения производится путем подачи управляющих импульсов напряжения разной полярности на однообмоточнуй катушку электромагнитного привода.

2.4 Конструкция вакуумной дугогасительной камеры

В момент размыкания контактов в вакуумном промежутке коммутируемый ток инициирует возникновение электрического разряда, называемого «вакуумная дуга». Существование вакуумной дуги поддерживается за счет металла, испаряющегося с поверхности контактов в вакуумный промежуток. Плазма, образованная ионизированными парами металла, является проводником тока и поддерживает его протекание между контактами до момента перехода тока через ноль. В этот момент дуга гаснет, а оставшиеся пары металла мгновенно (за 7-10 микросекунд) конденсируются на поверхности контактов и других деталей дугогасительной камеры, восстанавливая электропрочность вакуумного промежутка. В это же время на разведенных контактах восстанавливается приложенное к ним напряжение. Если при восстановлении напряжения на поверхности контакта (как правило, анода) остаются перегретые участки, они могут служить источником эмиссии заряженных частиц, вызывающих пробой вакуумного промежутка, с последующим протеканием тока через него. Для избежания подобных отказов необходимо управлять вакуумной дугой, равномерно распределяя тепловой поток по всей поверхности контактов. Наиболее эффективным способом управления дугой является наложение на нее продольного (сонаправленного с направлением тока) магнитного поля, которое индуцируется самим током. Данный способ применен в вакуумных дугогаси-тельных камерах, которые разработаны и производятся предприятием «Таврида Электрик». Эта конструкция имеет явные преимущества:

— высокая отключающая способность;

— минимальные габариты и вес;

— малая величина тока среза (4-5 ампер), ограничивающая коммутационные перенапряжения до безопасных величин Продольное магнитное поле минимизирует коммутационный износ контактов (эрозию) и обеспечивает значительный коммутационный ресурс.

а) Вакуумные дугогасительные камеры

б) Продольное магнитное поле равномерно распределяет вакуумную дугу по поверхности контактов

3. Принцип действия модуля.

В отключенном положении выключателя контакты вакуумной камеры (ВДК) удерживаются в разомкнутом состоянии действием отключающей пружины, которое передается на подвижный контакт ВДК посредством тягового изолятора. Для включения модуля на обмотку электромагнитного привода разряжается предварительно заряженный включающий конденсатор блока управления. Импульс тока, протекающего по обмотке электромагнитного привода в результате разряда конденсатора, создает магнитное поле в зазоре между якорем и плоским магнитопроводом.

По мере роста тока в обмотке электромагнитного привода сила электромагнитного притяжения между якорем и плоским магнитопроводом возрастает до величины, превышающей силу удержания, создаваемую пружиной отключения. В этот момент якорь привода начинает двигаться по направлению к магнитопроводу, толкая тяговый изолятор и подвижный контакт ВДК (линия 1 на рисунке).

В процессе движения якоря по направлению к магнитопроводу воздушный зазор уменьшается, благодаря чему сила притяжения якоря увеличивается. Быстро растущая электромагнитная сила стремительно ускоряет движущиеся части модуля до скорости примерно 1 м/с. Такая скорость является оптимальной для процесса включения и позволяет избежать дребезга контактов при их соударении, существенно снижая при всём этом вероятность пробоя вакуумного промежутка до момента замыкания контактов (линия 2 на рисунке).

Ускоряющийся якорь генерирует в витках обмотки электромагнитного привода противо-ЭДС, которая препятствует дальнейшему нарастанию тока в обмотке и даже несколько снижает его (участок 1-2 на рисунке).

В момент замыкания контактов (линия 2 на рисунке) подвижный контакт останавливается, а якорь продолжает свое движение еще на 2 миллиметра, поджимая контакты через пружину дополнительного поджатия контактов.

Достигнув плоского магнитопровода, якорь останавливается, примагнитившись к магнитопроводу привода (линия 2а на рисунке). В момент остановки якоря он перестает индуцировать противо-ЭДС, что приводит к росту тока, необходимого для насыщения кольцевого постоянного магнита до достижения им необходимых магнитных свойств (участок 2а-3 на рисунке). Намагниченный до насыщения кольцевой магнит создает мощный остаточный магнитный поток, достаточный для удержания якоря привода (и соответственно, контактов модуля) во включенном положении даже после отключения включающего тока вспомогательным контактом (линия 3 на рисунке).

Испытания на стойкость к механическим воздействиям показали, что усилие удержания, развиваемого постоянным магнитом, достаточно для того, чтобы удерживать модуль во включенном положении так долго, как это необходимо по условиям эксплуатации, даже при воздействии вибрационных и ударных нагрузок.

Отключающая пружина привода также сжимается в процессе движения якоря, накапливая потенциальную энергию для выполнения операции отключения модуля.

Перемещение якоря передается на синхронизирующий вал, поворачивая его в процессе перемещения на угол 44°, для обеспечения индикации состояния модуля, управления вспомогательными контактами и приведения в действие блокировочных механизмов распредустройства.

Для отключения выключателя на обмотку электромагнитного привода разряжается предварительно заряженный отключающий конденсатор блока управления, обеспечивающий протекание через обмотку в течение 15-20 миллисекунд тока в направлении, противоположном току включения (участок 4-5 на рисунке).

Ток отключения частично размагничивает постоянный магнит, ослабляя силу магнитного притяжения якоря к плоскому магнитол ров оду.

Совместное воздействие отключающей пружины и пружины дополнительного поджатия контактов является достаточным для того, чтобы «оторвать» примагниченный якорь от магнито-провода (линия 4а). Возникающий воздушный зазор в приводе резко уменьшает силу притяжения, якорь под действием пружин интенсивно разгоняется и после 2 миллиметров свободного движения рывком увлекает за собой тяговый изолятор и подвижный контакт ВДК.

Усилие стартового рывка на подвижном контакте может достигать величины 2000 Н, что позволяет эффективно разрывать точки микросварок на поверхности контактов, которые могут возникать из-за термического воздействия токов короткого замыкания.

Размыкание контактов происходит с интенсивным ускорением, способствуя достижению максимальной отключающей способности модуля (линия 5 на рисунке).

По достижении якорем крайнего положения контакты ВДК удерживаются в разомкнутом состоянии усилием отключающей пружины, которое передается на подвижный контакт посредством тягового изолятора.

Перемещение якоря передается на синхронизирующий вал, поворачивая его в процессе перемещения на угол 44°, для обеспечения индикации состояния модуля, управления вспомогательными контактами и приведения в действие блокировочных механизмов распредустройства.

3.3 Блоки управления выключателем

Для управления (включения и отключения) выключателем, а также для сопряжения с существующими цепями релейной защиты и управления предназначены блоки управления BU/TEL различных типов.

При выполнении операций ВКЛ/ОТКЛ на катушки электромагнитных приводов выключателя разряжаются предварительно заряженные конденсаторы блоков управления. Таким образом обеспечивается строгое дозирование электрической энергии, что позволяет снизить совокупное разрушительное воздействие на контактную систему вакуумных дугогасительных электроэрозионных, тепловых и механических факторов, что в свою очередь способствует повышению коммутационного и механического ресурса всего вакуумного выключателя.

Блоки управления имеют встроенные блоки питания. Выбор типа блока управления зависит от рода оперативного напряжения (постоянное, переменное, выпрямленное), его источников, функционального назначения ячейки объема релейной защиты и автоматики, типа используемой аппаратуры и других параметров.

4. Технические характеристики вакуумных выключателей

4.1 Структура условного обозначения выключателя

Пример записи обозначения выключателя напряжением 10 кВ с номинальным током отключения 12,5 кА, номинальным током 630 А, климатического исполнения У2, конструктивного исполнения 45 по каталогу:

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector